- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Gupta, Malancha (4)
-
Nguyen, Bryan (4)
-
Tsotsis, Theodore (3)
-
Tabarkhoon, Farnaz (2)
-
Welchert, Nicholas A. (2)
-
Dabir, Sasan (1)
-
Hu, Sheng (1)
-
Mishra, Ankit (1)
-
Tsotsis, Theodore T. (1)
-
Vashishta, Priya (1)
-
Zhao, Linghao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nguyen, Bryan; Tabarkhoon, Farnaz; Zhao, Linghao; Mishra, Ankit; Gupta, Malancha; Vashishta, Priya; Tsotsis, Theodore (, Molecular Systems Design & Engineering)
-
Welchert, Nicholas A.; Nguyen, Bryan; Tsotsis, Theodore T.; Gupta, Malancha (, Langmuir)
-
Nguyen, Bryan; Dabir, Sasan; Tsotsis, Theodore; Gupta, Malancha (, Industrial engineering chemistry research)Efficient separation of hydrogen under steam reforming conditions is important for the development of clean energy sources. Although high-temperature and steam-stable membranes with high fluxes and large separation factors would be valuable for such an application, their fabrication remains a challenge. Silicon-based ceramic membranes are particularly promising due to their high temperature resistance and excellent chemical stability. In this study, we propose a new synthetic route for fabricating nanoporous, asymmetric membranes via the pyrolysis of silicon-containing polymer films deposited by initiated chemical vapor deposition (iCVD) on macroporous silicon carbide supports. Specifically, we systematically investigated the change in the chemical structure of poly(2,4,6,8-tetravinyl-2,4,6,8-tetramethyl cyclotetrasiloxane) films at different pyrolysis temperatures and found that the complete transition to a silica membrane occurred at ~1100 °C. Three different supports composed of silicon carbide powders of varying sizes were tested for membrane preparation. It was found that membranes formed with our process were microporous with separation factors several times above the corresponding Knudsen factors. Our synthetic route, therefore, offers a scalable and solventless method for producing silicon-based ceramic membranes for high-temperature separation and sensor applications.more » « less
An official website of the United States government
